skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fernandez, Ann"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract The development of nanoparticle‐based biomedical applications has been hampered due to undesired off‐target effects. Herein, we outline a cellular AND gate to enhance uptake selectivity, in which a nanoassembly–cell interaction is turned on, only in the concurrent presence of two different protein functions, an enzymatic reaction (alkaline phosphatase, ALP) and a ligand–protein (carbonic anhydrase IX, CA IX) binding event. Selective uptake of nanoassemblies was observed in cells that overexpress both of these proteins (unicellular AND gate). Interestingly, selective uptake can also be achieved in CA IX overexpressed cells, when cocultured with ALP overexpressed cells, where the nanoassembly presumably acts as a mediator for cell–cell communication (bicellular AND gate). This logic‐gated cellular uptake could find use in applications such as tumor imaging or theranostics. 
    more » « less